
 CONSULTIMATOR document & knowledge automation

1

CONSULTIMATOR
v 1.1.11.01

https://consultimator.com

Technical Reference

https://consultimator.com/

 CONSULTIMATOR document & knowledge automation

2

Table of Contents

1 Introduction ... 4

2 The Project File .. 5

2.1 General .. 5

2.2 The Project File XML-Format ... 5

2.3 Section „GENERAL“... 6
2.3.1 Mixed Settings ... 6

2.3.1.1 KEY ... 6
2.3.1.2 RELEASE ... 7
2.3.1.3 TEMPLATENAME .. 7
2.3.1.4 TEMPLATEHEAD ... 7
2.3.1.5 JAVASCRIPTBLOCK ... 8
2.3.1.6 LINKSTYLESHEET .. 8
2.3.1.7 TEMPLATETITLE ... 8
2.3.1.8 TEMPLATEFOOT ... 9
2.3.1.9 TEMPLATELANGUAGE .. 9
2.3.1.10 STORAGETYPE .. 9
2.3.1.11 COMPONENTPATH... 9
2.3.1.12 SHOWOMESSAGESDEFAULT .. 9
2.3.1.13 PLACEHOLDERUNDERLINE ... 10
2.3.1.14 PLACEHOLDERCHAR ... 10
2.3.1.15 EDITABLEOMESSAGES .. 10
2.3.1.16 XSSSTRICT .. 10

2.3.2 Form Action Behaviour .. 11
2.3.2.1 FORMACTION ... 11
2.3.2.2 FORMMETHOD .. 13
2.3.2.3 FORMTARGET .. 14
2.3.2.4 FORMENCTYPE ... 14
2.3.2.5 RSAPUBLICKEY ... 14

2.4 Section „ACTIONS“ ... 15

3 The Different Action Types ... 16

3.1 Data Entry Actions in the „INPUTBLOCK“ .. 16
3.1.1 Data Entry - Actions ... 16

3.1.1.1 Action: TEXT ... 16
3.1.1.2 Action: TEXTAREA .. 17
3.1.1.3 Action: DATE .. 19
3.1.1.4 Action: MONTH .. 20
3.1.1.5 Action: TIME .. 21
3.1.1.6 Action: CHECKBOX ... 21
3.1.1.7 Aktion: COLOR ... 22
3.1.1.8 Action: MESSAGE ... 23
3.1.1.9 Action: BLINDS ... 24
3.1.1.10 Action: SELECT ... 25
3.1.1.11 Action: OPTION .. 26

3.1.2 Special Functions ... 27
3.1.2.1 Action: SHOWOMESSAGES .. 27
3.1.2.2 Action: SUBMIT .. 28
3.1.2.3 Action: FORMCLIPBOARD .. 28

 CONSULTIMATOR document & knowledge automation

3

3.1.2.4 Action: SUBMITSECURE ... 29
3.1.2.5 Action: PARAMETERS ... 30
3.1.2.6 Action: RESET ... 30
3.1.2.7 Action: FORMDOWNLOAD ... 31
3.1.2.8 Action: FORMDOWNLOADCSV .. 32
3.1.2.9 Action: FORMDOWNLOADSECURE .. 32
3.1.2.10 Action: PARAMETERUPLOAD ... 33
3.1.2.11 Action: ATTACHMENT .. 34

3.1.3 General Actions ... 34
3.1.3.1 Action: STYLE ... 34

3.2 Computing Values .. 35
3.2.1 Action: COMPUTE .. 35

3.2.1.1 AID ... 35
3.2.1.2 ATYPE ... 35
3.2.1.3 ACONDITION .. 35
3.2.1.4 ATEXT ... 35
3.2.1.5 ATEXTFALSE ... 37

3.3 Replacements .. 37
3.3.1 Standard Replacements .. 37
3.3.2 Intelligent Replacements ... 37
3.3.3 Automatic Counters .. 38

3.4 Data Output via “Outputblock” ... 39
3.4.1 Output - Actions .. 39

3.4.1.1 Action: OMESSAGE .. 39
3.4.1.2 Action: STARTBLOCK .. 40
3.4.1.3 Action: ENDBLOCK ... 41

3.4.2 Special Functions ... 41
3.4.2.1 Action: CLIPBOARD .. 41
3.4.2.2 Action: WORDSAVE .. 42
3.4.2.3 Action: PRINT ... 43
3.4.2.4 Action SHOWINPUTBLOCK ... 43

4 CONSULTIMATOR Data Encryption ... 45

4.1 Location of encryption process and browser compatibility .. 45

4.2 How to create a RSA Public Key Private Key Pair .. 45

4.3 Encryption method ... 45

4.4 Decryption ... 46

4.5 encodeURIComponent / decodeURIComponent .. 46

4.6 No proprietary changes .. 46

5 Prefilling CONSULTIMATOR Output Pages automatically 47

6 CONSULTIMATOR in Action .. 49

 CONSULTIMATOR document & knowledge automation

4

1 Introduction

Welcome to CONSULTIMATOR! With CONSULTIMATOR you can create dialog pages,
small expert systems, automatically generated model contracts, calculators and
letters.

You can set up a questionnaire as well as the corresponding answers and information.
Depending on the complexity of your project you will need no or only little
programming skills.

Basic HTML and Javascript skills are sufficient to push CONSULTIMATOR to unexpected
power. No complex programming needed, CONSULTIMATOR will do this for you.

The process is easy:

• You set up a project file witch describes the questions to be asked as well as
the corresponding content and answers.

• Next, you start CONSULTIMATOR to create a HTML page from this project file.

• You can design this HTML page freely using CSS or you just keep the standard
CSS settings used by CONSULTIMATOR.

Demo-Mode

Curious? Please feel free to test CONSULTIMATOR! You can create small dialogs with a
maximum of 20 actions for evaluation purposes without a license key. Actions for
handling secure data are not available in the demo mode and will be ignored when
creating the output pages.

Do you need a license key?

Please contact me, you´ll find my contact data on the CONSULTIMATOR website.

 CONSULTIMATOR document & knowledge automation

5

2 The Project File

2.1 General

The project file is the central configuration file for your project. In this project file you
define all actions CONSULTIMATOR is supposed to execute, as well as several general
information.

Doing this you will normally not be programming, but just setting values. At some
points you will be writing program code, but you will probably not even notice it. ;-)

2.2 The Project File XML-Format

You will create the project file in a file format called „XML“. The CONSULTIMATOR
Editor will save it with the file extention „.cmp”, but inside, it´s still XML.
XML stands for „Extended Markup Language“, but that´s just nice to know, just
mentioned for educational purpose. ;-)

What you should know about XML files, as far as we´re using XML here:

• Every element in your project file has a name. This name is placed between a
greater-than- and a lower-than – character, e.g. like this:

„<elementname>“

• The end of an element is marked similarly, only that there is an additional „/“
between the lower-than-character and the element name, e.g. like this:

</elementname>

• The actual value assigned to the element stands inbetween these two markers, e.g.
like this:

<elementname>This is the elements value!</elementname>

• When entering the „forbidden“ characters „&“, „<“ und „>“ within values you will
have to use a special syntax to avoid problems. They are entered like this:

o Aus „&“ wird „&“
o Aus „<“ wird „<“
o Aus „>“ wird „>“

e.g..:

<elementname>I love fish & chips!</elementname>

• There is an alternative way to enter these „forbidden“ characters, which is very
useful if they occur very often. You can also use it to enter very long text over
multiple lines:

 CONSULTIMATOR document & knowledge automation

6

<elementname><![CDATA[Just as well as fish & chips I love steak & kidney pie!
]]></elementname>

You will love this when you have to enter very long text over multiple lines, for you
can enter any text between <![CDATA[and]]>.

Caution:
Multiline (!) values, those using line feeds, will only be accepted by
CONSULTIMATOR using action type OMESSAGE! That doesn´t mean, that other
actions may not contain line feeds creating HTML-tags like „
“ or „<p></p>“,
but the project file may not contain line feeds outside of OMESSAGE actions.

• Elements may be placed within each other, e.g. like this:

<actions>
 <action1>
 <subaction1></subaction1>
 <subaction1></subaction1>
 </action1>
 <action2></action2>
 <action3></action3>
</actions>

But never like this:

<action1>

<action2>
</action1>

</action2>

2.3 Section „GENERAL“

2.3.1 Mixed Settings

2.3.1.1 KEY

This is where you enter your personal license key. Without this key you cannot publish
your results to consultimator.com. Nevertheless, you can download them an use them
locally, or publish them on your own webserver, within our terms and conditions.

Attention – DELETE-function:

If you add „-kill“ at the end of the license key and if RELEASE ist set to „true“, the
output file will not be generated, but deleted!

 CONSULTIMATOR document & knowledge automation

7

Project Signature instead of License Key:

If you would like to pass your project file on to others without handing out your license
key, you can alternatively sign your project with your project signature.

You can create your project signature either by using the according function in the
CONSULTIMATOR Editor, where you find your KEY settings, or you can call the
processor via URL with the additional parameter “signproject=true”.

Just place the project signature into the KEY, just as you would with your personal
license key.

Please be aware that this is by purpose not a full alternative to your personal license
key. Once signed with the project signature, actions may not be moved, added,
deleted, their AID and their ATYPE may not be changed without losing the validity of
the project signature.

2.3.1.2 RELEASE

If RELEASE is set to „true“, the output file will be saved in your personal folder, using
the file name defined as TEMPLATENAME.
This option will only work, if an individual license key is provided.

2.3.1.3 TEMPLATENAME

This is where you enter the name of the file to be created. Please, don´t add a file
extention, this will always be “.html” and added automatically.

2.3.1.4 TEMPLATEHEAD

CONSULTIMATOR will create the complete HTML code necessary. It´s up to you
whether you plan to embed it into another Website or use the file “stand alone”.

If you would like to create a complete HTML page, you can add all header data here.
This could e.g. look like this:

<templatehead><![CDATA[<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-
scale=1.0, user-scalable=0"/>
<link href="https://fonts.googleapis.com/css?family=Open+Sans" rel="stylesheet">
<link rel="stylesheet" type="text/css" href="cssoptions/standard.css">
<title>This is the title of your page</title>
</head>
<body>
]]></templatehead>

 CONSULTIMATOR document & knowledge automation

8

As you can see, you can add a CSS-file here, which will handle all design settings for
your page.

You could also add individual Javascript files to enhance the functions that can be used
within CONSULTIMATOR. For details see below.

If you would like to use a standard HTML-header and foot, simply define
TEMPLATEHEAD like as “[html]”:

<templatehead>[html]</templatehead>

(After „[html]“ you can define further HTML-Code, to show up after the tag „<body>“
and before the actual CONSULTIMATOR output.)

In this case you can omit the TEMPLATEFOOT, but you should set the TEMPLATETITLE
to your page title, so that it will show up in the browser.

2.3.1.5 JAVASCRIPTBLOCK

Through JAVASCRIPTBLOCK individual JavaScript code can be added, which will be placed at
the beginning of the JavaScript output file.

Please enter only the JavaScript code without using „<script>“ / „</script>“ or similar.

2.3.1.6 LINKSTYLESHEET

Through LINKSTYLESHEET you can define a CSS stylesheet link different to the one used
when defining the HTML Header as „[html]“.

The link has to be defined this way:

<link rel=‘stylesheet‘ type=‘text/css‘ href=‘……….‘ >

Exemption: Alternative CSS-Files stored in https://consultimator.com/cssoptions/ can be
linked simply by their file name.

If this field stays empty, the default value will be used.

2.3.1.7 TEMPLATETITLE

The value assigned to “Templatetitle” will be added to the TEMPLATEHEAD as page
title:

<templatetitle>This could be your page title</templatetitle>

This setting will be ignored, if TEMPLATEHEAD is different to „[html]“.

 CONSULTIMATOR document & knowledge automation

9

2.3.1.8 TEMPLATEFOOT

The value assigned to“Templatefoot” will be inserted at the end of the page. A HTML
page would, for example, be finalised like this:

<templatefoot><![CDATA[</body>
</html>]]></templatefoot>

If your TEMPLATEHEAD contains „[html]”, after HTML code set here an additional
„</body></html>“ will be set.

2.3.1.9 TEMPLATELANGUAGE

Through “Templatelanguage” you define whether certain dialogs will be shown in
English or in German:

English dialogs:
<templatelanguage>en</ templatelanguage >

German dialogs (default, can be omitted):
< templatelanguage >de</ templatelanguage >

2.3.1.10 STORAGETYPE

Through “storagetype” you define whether entered values are saved locally in your
browser in LocalStorage or SessionStorage, or not at all.

LocalStorage (data last permanently until deleted in browser):
<storagetype>local</storagetype>

SessionStorage (data last until session is closed, e.g. by closing tab):
<storagetype>session</storagetype >

No saving (default, can be omitted):
<storagetype></storagetype>

2.3.1.11 COMPONENTPATH

If you would like to save output files to a different System, you can change you can
change your “components”-path here.

2.3.1.12 SHOWOMESSAGESDEFAULT

CONSULTIMATOR divides all content into the two blocks „INPUTBLOCK“ (for all input
actions) and „OUTPUTBLOCK“ (for all output actions).
The OUTPUTBLOCK content can optionally be visible or unvisible on page load.

 CONSULTIMATOR document & knowledge automation

10

Here, you can choose between these two alternatives:

• Use „true“ to show OUTPUTBLOCK immediately.

• Use „false“ to keep OUTPUTBLOCK invisible on load. In this case, don´t forget to
include the action „SHOWOMESSAGES“, otherwise you will have no button to
make the OUTPUTBLOCK visible.

2.3.1.13 PLACEHOLDERUNDERLINE

CONSULTIMATOR regularly will show highlighted action ids, as long as placeholders
have not been set within the output area. If you prefer to show „______“ instead, you
can change this here.

Here, you can choose between these two alternatives:

• Use „true“ to simply show „______“.

• Use „false“to show the action ids.

2.3.1.14 PLACEHOLDERCHAR

If you would like to use a different Character to “_” for the PLACEHOLDERUNDERLINE-
function, you can set one or more Characters here. They will be repeated 7 times.
Useful, e.g., would be a “ ” to set a fixed space.

2.3.1.15 EDITABLEOMESSAGES

If EDITABLEOMESSAGES is set to “true”, the user can manually edit any generated
output inside the web browser.

Attention:

If the user changes any data in the INPUTBLOCK, manual changes to the output will be
dismissed.

Attention:

Do not use this function if you would like to be able to reproduce the exact output
from saved form data, as manual changes to the output will not be saved as part of the
form data.

2.3.1.16 XSSSTRICT

If XSSSTRICT is set to “true”, the automatically generated HTML-Header will add Inline-
CSS-Prevention to the Cross Site Scripting Policy. Inline-JavaScript is prohibited by

 CONSULTIMATOR document & knowledge automation

11

default. Both JavaScript- as well as CSS-files may only be hosted on the
CONSULTIMATOR server (or your own server, if you host the files yourself).

Reminder:
In case you still have inline CSS definitions (style=“…“), your webbrowser will not use
them and throw an error. To at least suppress these error messages, CONSULTIMATOR
will try to find all occurances of style=“…“ and remove them from your actions.
If you would like to set XSSSTRICT to “true” and still like to style your output
individually, you can use the action “STYLE” to define CSS classes. These can be
assigned to your output via class=“…“.

2.3.2 Form Action Behaviour

Values entered in the INPUTBLOCK can either be used for creating the OUTPUTBLOCK
or to pass them on to another webpage. All data are collected in a form (HTML
<form>). You define, how these data shall be used:

2.3.2.1 FORMACTION

A typical form action would be e.g.

<formaction>nextpage.html</formaction>

In this case form data would be passed on to the HTML page „nextpage.html“ and can
be processed there.

It´s also possible to generate an email with these data::

<formaction>mailto:myemail@email.com</formaction>

Special Case: Transfer via „CONSULTIMATOR Sicheres Kontaktformular“ mechanism

To use this form of data transfer, please use the following settings:

secureformtransmit.php|my@email.com|New message

or

secureformtransmit_toserver.php| my@email.com|New message

Please replace „my@email.com“ with your target email address. „New message“ can
be set as you wish, this text will be part of the email subject, next to other information.

If you choose secureformtransmit.php, the complete message will be sent to you as an
encrypted email attachment .

Using „secureformtransmit_toserver.php“, the encrypted message will remain on the
server and can be retrieved only through the cryptic URL link sent to you by a
notification email.. Retrieval must occur within 365 days after notification and the

mailto:myemail@email.com%3c/formaction

 CONSULTIMATOR document & knowledge automation

12

message will be deleted 90 days after retrieval or 365 days after notification, whatever
date is first.

The encryption itself is described separately. Encryption can only by decrypted by you
as the owner of the private key and other people you share the private key with.

To make use of this form of data transfer, please make shure to use the
FORMMETHOD „post“, as described below.

Tip: Use of processing instructions

You can also add processing instructions to the "subject" of your message. These serve
as supplementary work instructions for subsequent pages or the CONSULTIMATOR
Workflow Engine.

The block containing the processing instructions begins with [pi] and ends with [/pi]:

[pi] List of processing instructions [/pi]

The following processing instructions are currently supported:

Extended Parameters ("[xp]")

You can use the processing instruction [xp] to instruct
secureformtransmit(_toserver).php to add further parameters to the link for calling up
the output page to be filled with data. For example, the parameter "pkencskip" can be
useful:

[xp]pkencskip=default[/xp]

If the parameter "pkencskip" is set, the specified value, here "default", is used to
decrypt your RSA private key with the specified value (here: "default") if it is stored
encrypted in the browser. This means that the message to be decrypted can be
decrypted simply by clicking on the link in the email without any further intermediate
steps.

Of course, this option should only be used if the computer with the private key to be
decrypted is itself adequately protected against access by unauthorised third parties,
as this reveals the password for decrypting the private key.

Also, a value used in the form can also be set via its action name, here, for example,
the value of the action "callviamail" with the value "yes":

[xp]callviamail=yes[/xp]

Several parameters are joined together separated by "&":

[xp]pkencskip=default&aufrufausmail=yes[/xp]

 CONSULTIMATOR document & knowledge automation

13

Alternative return URL ("[altreturnurl]")

Use the "altreturnurl" to instruct secureformtransmit to point the link in the email to
open the encrypted data to a different page than the page used to capture the data:
[altreturnurl]/customers/customerid/formname.html[/altreturnurl]

For example, data can be collected via a form and processed in another form with a
single click.

Customised processors for the Workflow Engine ("[pipnames]")

If you use the CONSULTIMATOR Workflow Engine and would like to instruct it to
trigger further processing or workflows in addition to the basic data preparation tasks,
depending on the respective form, you can add your own processors to the engine.
You can name the processors to be executed in each case using the "pipnames":

[pipnames]name1,name2,name3[/pipnames]

In this example, the Workflow Engine would execute its processors "name1", "name2"
and "name3" in this order after the standard formats that are configured in the engine
itself have been processed.

The processors are located in the Workflow Engine in the "settings" subdirectory and
follow the following naming convention:

pi_gewähltername_processor.php

The CONSULTIMATOR Workflow Engine is open source and can be customised as
required. To create your own processors, you can use the existing processors in the
"settings" folder as a template. However, developing your own processors and
customising the Workflow Engine requires knowledge of the PHP programming
language. The CONSULTIMATOR Workflow Engine is therefore provided without
warranty and without any promise of support, unless expressly agreed otherwise and
unless customisations are made exclusively by the provider.

2.3.2.2 FORMMETHOD

Here you can define the method of data transfer. There are two options:

• <formmethod>get</formmethod>

• With „get“ all data are passed on to the next page via the URL. This is not
particularly safe, as all data are passed on clearly visible, but this might be ok for
you with uncritical data.

In addition, you will have problems if you try to pass on more than 3000

 CONSULTIMATOR document & knowledge automation

14

characters, because most browsers will not be able to process these. Please, take
into account that not only the data, but also the datafield-names count.
Nevertheless, 3000 characters actually can carry a lot of information if you don´t
need extremely long text input fields.

• <formmethod>post</formmethod>

The „post“ method is much more secure, because data are not handed over via the
URL, but directly to the server.

Please take into account that data handed over directly to the server cannot be
processed by a normal “HTML” webpage with JavaScript, because JavaScript is not
processed on the server. In this case you could e.g. use PHP, because PHP can read
the data handed over to the server.

If you combine „post“ with the form action „mailto:“ all data are handed over to
the local email client.

2.3.2.3 FORMTARGET

This element defines, whether, if used for opening a new webpage, the browser will
use the same brower window or use an new one. If you want the browser to stay in
the same window, leave this element empty. Otherwise, define it as follows:

<formtarget>_blank</formtarget>

2.3.2.4 FORMENCTYPE

Here you can define in which format data are passed on to the next page.
Options are:

• application/x-www-form-urlencoded:
(default value) All characters are encoded before sending (Spaces to "+", Special
Characters to ASCII HEX-values)

• multipart/form-data: no encoding

• text/plain: Spaces are encoded to "+"; special characters stay unchanged

When using form action „mailto:“, „text/plain“ will make the data show in the email
client in plain text. This, however, will not be compatible to the action „PARAMETERS“,
which will be explained later.

2.3.2.5 RSAPUBLICKEY

Here you can define your RSA Public Key, which will be used for encrypting user data
when usind the actions FORMDOWNLOADSECURE and SUBMITSECURE. There is a
separate chapter in this documentation concerning data encryption.

 CONSULTIMATOR document & knowledge automation

15

2.4 Section „ACTIONS“

In the section „ACTIONS“ all actions are defined in the order they will be processed.

Actions can roughly be divided in input-actions shown in the INPUTBLOCK, calculation-
actions to create necessary additional values, and output-actions shown in the
OUTPUTBLOCK.

Every action element consist of several elements which define, how the action will
behave.

The most important action elements:

• „AID“: every action has an action-id, „AID“.

The AID

o has to be unique,
o may only contain lowercase characters and numbers,
o may not contain any special characters,
o may not begin with a number.

The „AID“ ist most important for CONSULTIMATOR! Via the AID the value of any
action can be queried, z.B. when using the „ACONDITION“, via „COMPUTE“ and
also as replacement text during text output.

• The element „ATYPE“ defines, which kind of action is to be performed. The
different types are explained below.

• „ACONDITION“ defines, whether the action will be executed or not.

• „ATEXT“ defines, which text will be show with the action.

These already are the most important elements. There are some more elements,
which are only necessary for certain action types. They are explained within the
context of the particular action below.

 CONSULTIMATOR document & knowledge automation

16

3 The Different Action Types

3.1 Data Entry Actions in the „INPUTBLOCK“

3.1.1 Data Entry - Actions

3.1.1.1 Action: TEXT

Action TEXT creates a simple Text-Inputfield.
Text can be entered in a single row.
The input field size can be configured through ATEXTLENGTH oder
ATEXTWIDTHPERCENT.

3.1.1.1.1 AID

Unique ID based on the rules explained above: lowercase only, only letters a – z, no
special characters, numbers are ok, but not as first character.

3.1.1.1.2 ATYPE

Value: text

3.1.1.1.3 ACONDITION

The content of this element is checked logically, whether its result is “true”.
It is a comparison that has to be entered as you might be used to in Javascript.

You will find an outstandingly good overview here:

https://www.w3schools.com/js/js_comparisons.asp

Important:
You can query the values of all input actions for comparison purposes through their
AID! Doing this, all returned values are of the type String, except the return value of
the action “checkbox”, which will be of the type Boolean (containing the value true or
false). In the same way you can query the results of any “compute” action. Their type
will be determined by the assigning operation.

Example: You have defined a text action with AID „nameofthedog“ angelegt. You can
query this value through ACONDITION e.g. like this:

<acondition>nameofthedog == „Bozo“</acondition>

If your user has entered „Bozo“ as the dogs name, the condition is „true” and the
action will be executed.

Furthermore, you can perform practically any JavaScript command that will deliver a
result of „true“ or „false“.

https://www.w3schools.com/js/js_comparisons.asp

 CONSULTIMATOR document & knowledge automation

17

3.1.1.1.4 ATEXT

The text entered here will be used for labelling the text input field.

If you would like to adapt the text based on the user input, you can insert these user
inputs into the text by placing the according AID into curly braces, „{“ and „}“.

So if your user entered „Bozo“ to the text input field named with AID „nameofthedog“,
you could ask for the dogs age like this:

<atext>How old is {nameofthedog}?</atext>

3.1.1.1.5 APLACEHOLDER

If this value is set to „true“, the text entered als ATEXT will not be displayed as a label
but as a placeholder text inside the text input field.

3.1.1.1.6 ADEFAULTVALUE

This is the suggested Value for this action.

<adefaultvalue>suggested Value </adefaultvalue>

3.1.1.1.7 ATEXTLENGTH

Here you can define the width of the input field in characters, so e.g. for a 4-character
input field:

<atextlength>4</atextlength>

3.1.1.1.8 ATEXTWIDTHPERCENT

Here you can define the width of the input field in percent of the window width. So if
you want the input field to span the full window width you would enter:

<atextwidthpercent>100</atextwidthpercent>

3.1.1.1.9 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.2 Action: TEXTAREA

The action TEXTAREA will create a multiline textinput field, which will also allow line
feeds using the Enter-Key during text entry.

 CONSULTIMATOR document & knowledge automation

18

3.1.1.2.1 AID

see above

3.1.1.2.2 ATYPE

Value: textarea

3.1.1.2.3 ACONDITION

see above

3.1.1.2.4 ATEXT

see above

3.1.1.2.5 APLACEHOLDER

see above

3.1.1.2.6 ADEFAULTVALUE

see above

3.1.1.2.7 ATEXTROWS

Defines the number of textrows the multiline text entry field will show. The text
actually entered may be longer.

Example for a multiline text entry field with 5 rows:

<atextrows>5</atextrows>

3.1.1.2.8 ATEXTLENGTH

see above

3.1.1.2.9 ATEXTWIDTHPERCENT

see above

3.1.1.2.10 AWYSIWYG

If AWYSIWIG is set to “true”, the TEXTAREA will use a WYSIWYG HTML editor.

Please note:
This option requires the HTML editor „Trumbowyg“ (https://alex-
d.github.io/Trumbowyg/) as well as JQuery to be installed on the webserver.

3.1.1.2.11 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

 CONSULTIMATOR document & knowledge automation

19

<astyle>color:red; font-size:15pt</astyle>

3.1.1.3 Action: DATE

The action DATE creates a date entry field. Most browsers will support this input type
by showing an input mask as well as a date picker tool to select the date from a
calendar view.

3.1.1.3.1 AID

see above

3.1.1.3.2 ATYPE

Value: date

3.1.1.3.3 ACONDITION

see above

3.1.1.3.4 ATEXT

see above

3.1.1.3.5 ADEFAULTVALUE

see above, please use the ISO standard “YYYY-MM-DD” for default values.

3.1.1.3.6 Speciality: „ISOFORMAT“

There is a speciality concerning the date input field.

No matter which format the date entry field will show during data entry, the “value”
would always be presented in ISO standard “YYYY-MM-DD”. In Germany, where
CONSULTIMATOR was developed, dates are usually used formatted as “DD.MM.YYYY”,
so the value will be converted in the background into the German standard.

So, you fill a date input field with AID „birthday“ with August 3rd, 1988, the value of
„birthday“ will be converted and saved as 03.08.1988.

Nevertheless, for calculation and other purposes, the ISO-format might still be useful.
This is why CONSULTIMATOR will automatically create a second value in ISO-format,
which is stored to AID + “isoformat”. So if you query for “birthdayisoformat”, you will
still receive the original value “1988-08-03”.

 CONSULTIMATOR document & knowledge automation

20

3.1.1.3.7 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.4 Action: MONTH

The action MONTH creates a month / year entry field. Most browsers will support this
input type by showing an input mask as well as a date picker tool to select the date
from a calendar view.

3.1.1.4.1 AID

see above

3.1.1.4.2 ATYPE

Value: date

3.1.1.4.3 ACONDITION

see above

3.1.1.4.4 ATEXT

see above

3.1.1.4.5 ADEFAULTVALUE

see above, please use the ISO standard “YYYY-MM” for default values.

3.1.1.4.6 Speciality: „ISOFORMAT“

There is a speciality concerning the month input field.

No matter which format the date entry field will show during data entry, the “value”
would always be presented in ISO standard “YYYY-MM”. In Germany, where
CONSULTIMATOR was developed, month / year information are usually used
formatted as “fullmonth YYYY”, so the value will be converted in the background into
the German standard.

So, you fill a month input field with AID „month_of_birth“ with August 1988, the value
of „ month_of_birth “ will be converted and saved as “August 1988”.

Nevertheless, for calculation and other purposes, the ISO-format might still be useful.
This is why CONSULTIMATOR will automatically create a second value in ISO-format,

 CONSULTIMATOR document & knowledge automation

21

which is stored to AID + “isoformat”. So if you query for “month_of_birthisoformat”,
you will still receive the original value “1988-08”.

3.1.1.4.7 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.5 Action: TIME

The action TIME creates a time-entry field. Most browsers will support this input type
by showing an input mask as well as a Time picker tool to select the time from. The
time-entry field uses 24-hour format, “hh:mm”.

3.1.1.5.1 AID

see above

3.1.1.5.2 ATYPE

Value: date

3.1.1.5.3 ACONDITION

see above

3.1.1.5.4 ATEXT

see above

3.1.1.5.5 ADEFAULTVALUE

see above, please use the 24-hour format “hh:mm” for default values.

3.1.1.5.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.6 Action: CHECKBOX

The action type CHECKBOX will create a checkbox.
Important: the value of a checkbox will be „true“, if the checkbox is checked, „false“, if
unchecked.

 CONSULTIMATOR document & knowledge automation

22

3.1.1.6.1 AID

see above

3.1.1.6.2 ATYPE

Value: checkbox

3.1.1.6.3 ACONDITION

see above

3.1.1.6.4 ATEXT

see above

3.1.1.6.5 ADEFAULTVALUE

see above

3.1.1.6.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.7 Aktion: COLOR

The action COLOR creates a HTML5 color picker dialog.

Attention:
The color picker does not show on all web browsers. Whilst Chrome, Firefox und Edge
work fine, Safari and Internet Explorer will only show a text input field. Nevertheless,
the color value can still be entered in RGB-Hex style (#xxyyzz).

3.1.1.7.1 AID

see above

3.1.1.7.2 ATYPE

Value: color

3.1.1.7.3 ACONDITION

see above

3.1.1.7.4 ATEXT

see above

 CONSULTIMATOR document & knowledge automation

23

3.1.1.7.5 ADEFAULTVALUE

see above

3.1.1.7.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.8 Action: MESSAGE

The action MESSAGE will only create a text output and will not accept any user input.
MESSAGE is good for giving advice or interim results to the user during the use of the
INPUTBLOCK, because MESSAGE output is shown in the INPUTBLOCK.

Do not mix um MESSAGE and OMESSAGE (Output-Message): OMESSAGE actions are
(only) meant for showing text output in the OUTPUTBLOCK.

Tip:
MESSAGE can also be used to do „invisible“ things, e.g. like defining CSS settings. This
example will change the color of buttons to blue:

 <action>
 <aid>styledeclaration</aid>
 <acondition>false</acondition>
 <atype>message</atype>
 <atext><![CDATA[
<body>
<style>
.con_button {background-color: blue;}
</style>
]]></atext>
 </action>

In this case, please remember to set the ACONDITION to „false“ to prevent the output
from creating an extra empty row.

3.1.1.8.1 AID

see above

3.1.1.8.2 ATYPE

Value: message

 CONSULTIMATOR document & knowledge automation

24

3.1.1.8.3 ACONDITION

see above

3.1.1.8.4 ATEXT

see above

3.1.1.8.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.9 Action: BLINDS

The action „BLINDS“ will create a subtitle-block within the content input area. This
block will work as a switch to show or hide the content inside the block. Clicking the
subtitle-block will show all input elements inside the block and hide all elements
belonging to other blocks.

If the subtitle-block already open and clicked again, it will close.

If the first block is supposed to be closed on page load, this can be achieved via
individua style settings:

#blindstext1 {
 display:none;
}

In the same way, an alternative block can be shown in an open state on page load, e.g.
for block 2:

#blindstext2 {
 display:block;
}

3.1.1.9.1 AID

see above

3.1.1.9.2 ATYPE

Value: blinds

3.1.1.9.3 ACONDITION

see above, but: ACONDITION will not only hide the subtitle on “false”, but the
complete block with all input elements.

 CONSULTIMATOR document & knowledge automation

25

3.1.1.9.4 ATEXT

see above

3.1.1.9.5 ABLOCKID

ABLOCKID can be set to the AID of an OMESSAGE action. By doing so, the output area
will scroll to the selected OMESSAGE when the BLIND is clicked. This, of course, only
makes sense, if the input- and output areas are placed next to each other and they can
scroll separately.

3.1.1.9.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.10 Action: SELECT

The action SELECT will show a drop-down box with a predefined list of selectable input
values. The user can only pick one of these values.

3.1.1.10.1 AID

see above

3.1.1.10.2 ATYPE

Value: select

3.1.1.10.3 ACONDITION

see above

3.1.1.10.4 ATEXT

see above

3.1.1.10.5 ADEFAULTVALUE

see above

3.1.1.10.6 AOPTIONS

Use AOPTIONS to define the list of selectable input values the user can pick from.

3.1.1.10.6.1 AOPTION

This is one of the selectable input values, consisting from the text shown to the user
and the actual value set, if the user selects this option.

 CONSULTIMATOR document & knowledge automation

26

3.1.1.10.6.1.1 AOPTLABEL

This is the option text shown to the user.

3.1.1.10.6.1.2 AOPTVALUE

This is the value to be set, once the user selects the defined option text.

3.1.1.10.7 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.1.11 Action: OPTION

The action OPTION will show several Option buttons (so called “Radio Buttons”), based
on the options defined. Only one of the options can be selected.
Basically, both OPTION and SELECT aim for the same goal and simply look differenty.

3.1.1.11.1 AID

see above

3.1.1.11.2 ATYPE

Value: option

3.1.1.11.3 ACONDITION

see above

3.1.1.11.4 ATEXT

see above

3.1.1.11.5 ADEFAULTVALUE

see above

3.1.1.11.6 AOPTIONS

Use AOPTIONS to define the list of selectable input values the user can pick from.

3.1.1.11.6.1 AOPTION

This is one of the selectable input values, consisting from the text shown to the user
and the actual value set, if the user selects this option.

3.1.1.11.6.1.1 AOPTLABEL

This is the option text shown to the user.

 CONSULTIMATOR document & knowledge automation

27

3.1.1.11.6.1.2 AOPTVALUE

This is the option text shown to the user.

3.1.1.11.6.1.3 AOPTCHECKED

If this element ist set to „true“, this option is preselected.

3.1.1.11.7 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2 Special Functions

3.1.2.1 Action: SHOWOMESSAGES

SHOWOMESSAGES shows a button, which will toggle the OUTPUTBLOCK visible or
unvisible.

You will have to define this button, if you defaulted the visibility of the OUTPUTBLOCK
to “false” in the GENERAL section.

3.1.2.1.1 AID

see above

3.1.2.1.2 ATYPE

Value: showomessages

3.1.2.1.3 ACONDITION

see above

3.1.2.1.4 ATEXT

This is the label of this button.

3.1.2.1.5 ATOGGLEINPUTOUTPUT

Default is “false”.

If set to „true“ INPUTBLOCK will be hidden, when OUTPUTBLOCK is made visible.

“true” may not be set, if OUTPUTBLOCK is visible by default. In this case SHOWOMESSAGES
would hide both INPUTBLOCK and OUTPUTBLOCK and leave you with an empty page.

 CONSULTIMATOR document & knowledge automation

28

3.1.2.1.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.2 Action: SUBMIT

Action SUBMIT will show a button to handle the form input according to the form
action settings defined in the GENERAL section. . Data will be encrypted asymetically
with your RSA Public Key defined in the project settings.

3.1.2.2.1 AID

see above

3.1.2.2.2 ATYPE

Value: submit

3.1.2.2.3 ACONDITION

see above

3.1.2.2.4 ATEXT

This is the label of this button.

3.1.2.2.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.3 Action: FORMCLIPBOARD

Action FORMCLIPBOARD will show a button which will send all form data to the
clipboard in a format compatible to the PARAMETERS action.

3.1.2.3.1 AID

see above

3.1.2.3.2 ATYPE

Value: submit

 CONSULTIMATOR document & knowledge automation

29

3.1.2.3.3 ACONDITION

see above

3.1.2.3.4 ATEXT

This is the label of this button.

3.1.2.3.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.4 Action: SUBMITSECURE

Action SUBMIT will show a button to handle the form input according to the form
action settings defined in the GENERAL section. Data will be encrypted asymetically
with your RSA Public Key defined in the project settings and will be passed along in
only one parameter “encdata”.

This action is not available when using the Internet Explorer and will not be displayed
there.

3.1.2.4.1 AID

see above

3.1.2.4.2 ATYPE

Value: submit

3.1.2.4.3 ACONDITION

see above

3.1.2.4.4 ATEXT

This is the label of this button.

3.1.2.4.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

 CONSULTIMATOR document & knowledge automation

30

3.1.2.5 Action: PARAMETERS

Action PARAMETERS will show a button, which will display a text entry dialog.
If the user copies the according URL parameters into this field, the page will be filled
with these values. If the data is encrypted, you will be prompted to enter your RSA
Private Key.

These URL parameters are created, when you define the form action to „mailto:“ and
click the SUBMIT button, see the description above.

Using these two buttons in combination your user can export and re-import all form
data.

3.1.2.5.1 AID

see above

3.1.2.5.2 ATYPE

Value: parameters

3.1.2.5.3 ACONDITION

see above

3.1.2.5.4 ATEXT

This is the label of this button.

3.1.2.5.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.6 Action: RESET

Action RESET shows a button to clear all form data.

3.1.2.6.1 AID

see above

3.1.2.6.2 ATYPE

Value: reset

 CONSULTIMATOR document & knowledge automation

31

3.1.2.6.3 ACONDITION

see above

3.1.2.6.4 ATEXT

This is the label of this button.

3.1.2.6.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.7 Action: FORMDOWNLOAD

Action FORMDOWNLOAD shows a button to save all form data to your computer via
browser download.

3.1.2.7.1 AID

see above

3.1.2.7.2 ATYPE

Value: formdownload

3.1.2.7.3 ACONDITION

see above

3.1.2.7.4 ATEXT

This is the label of this button.

3.1.2.7.5 AFILENAME

This is the suggested file name. Any added file-extention will be replaced by “.cmc”.

3.1.2.7.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

 CONSULTIMATOR document & knowledge automation

32

3.1.2.8 Action: FORMDOWNLOADCSV

Action FORMDOWNLOAD shows a button to save all form data as a comma separated
file (CSV) to your computer via browser download.

All values in the CSV file are enclosed by double quotation marks and separated by
semicolons. The file has UTF-8 character encoding. The first line contains the field
names.

Attention:
In general, Microsoft Excel can read CSV files. Nevertheless, Excel doesn´t recognize
the UTF-8 encoding automatically. Please, use the option to access external data in
text files instead to import the file data.

3.1.2.8.1 AID

see above

3.1.2.8.2 ATYPE

Value: formdownloadcsv

3.1.2.8.3 ACONDITION

see above

3.1.2.8.4 ATEXT

This is the label of this button.

3.1.2.8.5 AFILENAME

This is the suggested file name. Any added file-extention will be replaced by “.cmc”.

3.1.2.8.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.9 Action: FORMDOWNLOADSECURE

Action FORMDOWNLOADSECURE shows a button to save all form data to your
computer via browser download. Data will be encrypted asymetically with your RSA
Public Key defined in the project settings.

This action is not available when using the Internet Explorer and will not be displayed
there.

 CONSULTIMATOR document & knowledge automation

33

3.1.2.9.1 AID

see above

3.1.2.9.2 ATYPE

Value: formdownload

3.1.2.9.3 ACONDITION

see above

3.1.2.9.4 ATEXT

This is the label of this button.

3.1.2.9.5 AFILENAME

This is the suggested file name. Any added file-extention will be replaced by “.cmc”.

3.1.2.9.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.10 Action: PARAMETERUPLOAD

Action PARAMETERUPLOAD shows a button to upload all form data from your
computer via file upload. If the data is encrypted, you will be prompted to enter your
RSA Private Key.

3.1.2.10.1 AID

see above

3.1.2.10.2 ATYPE

Value: parameterupload

3.1.2.10.3 ACONDITION

see above

3.1.2.10.4 ATEXT

This is the label of this button.

 CONSULTIMATOR document & knowledge automation

34

3.1.2.10.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.2.11 Action: ATTACHMENT

Action ATTACHMENT shows a button to upload an attachment to the form data. This
attachment will be submitted or saved when using SUBMIT, SECURESUBMIT,
FORMDOWNLOAD und FORMDOWNLOADSECURE.

Attention:
This action can only be used once in a project.

3.1.2.11.1 AID

see above

3.1.2.11.2 ATYPE

Value: attachment

3.1.2.11.3 ACONDITION

see above

3.1.2.11.4 ATEXT

This is the label of this button.

3.1.2.11.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.1.3 General Actions

3.1.3.1 Action: STYLE

Action STYLE gives you the opportunity to add Cascading Style Sheet (CSS) definitions
to your project. CSS definitions will be placed into a separate file and will not be placed
inline into the HTML page.
The action can be used multiple times.

 CONSULTIMATOR document & knowledge automation

35

3.1.3.1.1 AID

see above

3.1.3.1.2 ATYPE

Value: style

3.1.3.1.3 ACONDITION

none

3.1.3.1.4 ATEXT

This is where the CSS style definitions are placed. Please do not include them in <style>
… </style>, as this could cause errors. CONSULTIMATOR will remove them
automatically in most cases, but best not to depend on this.

3.2 Computing Values

3.2.1 Action: COMPUTE

The action COMPUTE is extremely powerful.
COMPUTE is no button or input type, but a data processing function.

Wich COMPUTE you can create new values from existing ones: first, the status of
ACONDITION is analyzed, and the value of the COMPUTE action will be set to ATEXT, if
ACONDITION is true.

What makes ACONDITON special: if ACONDITION is false, there is a fallback value,
defined by ATEXTFALSE.

But there is one more, very important speciality, which is described below at ATEXT.

3.2.1.1 AID

see above

3.2.1.2 ATYPE

Value: compute

3.2.1.3 ACONDITION

see above

3.2.1.4 ATEXT

This is the important difference:

 CONSULTIMATOR document & knowledge automation

36

Contrary to the other ATEXT definitions other action types, here ATEXT does not assign
text values with optional replacements, but works according to JavaScript standards.

Here, you define in JavaScript format an Operation to be executed. Its value will be
assigned to the value of the COMPUTE action.

For example, you can

• Combine several AID values als text:

<atext>“The dog is called “ + nameofthedog + “ and is “ + ageofthedog + “ years
old!“</atext>

• AID values can be computed mathematically, e.g. the age of the dog in 3 years can
be computed this way:

<atext>+ageofthedog + 3</atext>

Notice:
In the example above the code doesn´t show

„ageofthedog + 3“

but:

„+ageofthedog + 3“

The reason is easy to understand: if the „+“ before „ageofthedog“ is missing, the
system will think that „ageofthedog“ is a character string and not a numerical
value. In that case, e.g., if the dog was 12 years old, attaching the „3“ to the end
would result in this value: „123“. This would be fantastic for the dog, but, for what
we wanted to achieve, simply incorrect.

• Also, within ATEXT JavaScript specific functions can be executed, in this example
here the date of today would be computed in the formate „DD.MM.YYYY”:

<atext>("0" + new Date(new Date().getTime()).getDate()).slice(-2) + "." + ("0" +
(new Date(new Date().getTime()).getMonth() + 1)).slice(-2) + "." + new Date(new
Date().getTime()).getFullYear()</atext>

• And you could even define own JavaScript functions you can define or include in
the TEMPLATEHEAD:

 <atext>estimatedlifetime (ageofthedog)</atext>

But now it´s getting really complex. Actually, this is what we wanted to avoid. But if
you absolutely want to code... ;-)

 CONSULTIMATOR document & knowledge automation

37

3.2.1.5 ATEXTFALSE

Like ATEXT, but used, when ACONDITION is “false”.

3.3 Replacements

3.3.1 Standard Replacements

Replacements are extremely useful an have been mentioned before.
Via replacements you can change the produced ATEXT output as well as AOPTLABEL
output by inserting AID values by simply writing the AID name in curly braces, „{“ and
„}“:

Example: My Dog is called {nameofthedog} and is {ageofthedog} years old!

These placeholders will be replaced in realtime as soon as the according values are
entered or calculated via COMPUTE.

Important:

When using OMESSAGE actions, empty values will be show as the placeholders value
with a background highlight. This way, you can see at a glance that this value has
probably not been set yet.

If, however, you wish to hide an empty value completely, place a “+” at the end of the
placeholder:

{nameofthedog+}

3.3.2 Intelligent Replacements

Intelligent Replacements will help you to create even more individualized Output.
Intelligent Replacements are used like and in the same places as the Standard
Replacements, but have the following structure:

{{aid|Text to show if value of der AID is „true“|Text to show if “false” }}

Example:

„Please deliver all goods to {gender|Mr.|Mrs.} {nameofcustomer} by tomorrow.“

If the value of AID „gender“ is set to „true“ (or 1) for male, „Mr.“, if “false”, „Mrs.“ will
be shown.

This example is chosen for good reason: this way you can easily create complete
documents, correspondence etc. in a gender specific way without using impersonal
workarounds.

 CONSULTIMATOR document & knowledge automation

38

Tip: How to add more Options

 If you like, you can add further output options.

{{aid|Text to show if value of der AID is „true“|Text to show if “false” |Text to show if

“-1” |Text to show if “-2” |etc. }}

For any option more than “false” (or “0”) you count down the value of your AID, so you
use 1 (or “true”), 0 (or “false”), -1, -2, -3, -4 and so on. There is no limit in the number
of options that can be added.

Tip: Check Action-ID for string content

Would you like to check whether aid contains string content or not, just add a question
mark behind the aid:

{{aid?|Text to show if string content exists|Text to show if string is empty}}

Tip:

You can also use a Standard Replacement within an Intelligent Replacement.

Attention:

The formerly used syntax using single instead of double brackets still works fine as long
as you do not use Standard Replacements within the Intelligent Replacement and you
only use the options for “true” and “false”.

3.3.3 Automatic Counters

Automatic Counters help to enumerate Sections and Chapters of your output text
dynamically, when OMESSAGE actions are hidden.

You can use

• [inc] for the main sections,

• [incs] for any enumeration within each main section.

The [inc] counter will increase by 1 with every usage, as long as the OMESSAGE action
is set to display.

The [incs] counter will increase by 1 with every usage, until a new [inc] counter is
called.

 CONSULTIMATOR document & knowledge automation

39

Just place [inc] or [incs] anywhere in your OMESSAGE action and it will be replaced
automatically.

Both [inc] and [incs] work across the borders of each OMESSAGE action.

Attention:
Automatic Counters cannot be placed into intelligent replacements.

Referring to the Counters within Output Actions:

If you would like to refer to certain counters within Output Actions, adding the counter
value to your text, e.g..

„As mentioned in article 23…“,

you can do this by adding a unique identifier in round brackets to [inc] [incs] or
[incstart]:

[inc(uniqueidentifier)]

z.B. [inc(contactconditions)]. Within the output text you reference it by using “[link-
inc(contactconditions)]” (bzw. link-incs, link-incstart), e.g.

„As mentioned in article [link-inc(constractconditions)]…“

3.4 Data Output via “Outputblock”

3.4.1 Output - Actions

3.4.1.1 Action: OMESSAGE

OMESSAGE is the standard output action in the OUTPUTBLOCK, the actual output area.

The output area consists of one or more OMESSAGE actions.

• An output should be splitted in several OMESSAGE actions, if these actions shall be
shown depending on differen ACONDITION results.

• You can wrap up one or more OMESSAGE actions in a block using the STARTBLOCK
and ENDBLOCK action. This is useful e.g. for processing the block with the
CLIPBOARD action, described further down.

3.4.1.1.1 AID

see above

3.4.1.1.2 ATYPE

Value: omessage

 CONSULTIMATOR document & knowledge automation

40

3.4.1.1.3 ACONDITION

see above

3.4.1.1.4 ATEXT

This is the output text to be presented in the OUTPUTBLOCK.

There is one speciality concerning the ATEXT element within OMESSAGE, which will
make life much easier:

Whereas ususally the ATEXT elements may not contain linefeeds, here linefeeds are
allowed, as long as they are placed between „<![CDATA“ und „]]>“.

3.4.1.1.5 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.4.1.2 Action: STARTBLOCK

With STARTBLOCK, you can wrap up one or more OMESSAGE actions into one block.
This way, you can assign a Caption to this block and you can copy its contents into the
clipboard using the CLIPBOARD action.

STARTBLOCK defines the beginning oft he block.

Attention: STARTBLOCK has – and needs - no ACONDITION!

3.4.1.2.1 AID

see above

3.4.1.2.2 ATYPE

Value: startblock

3.4.1.2.3 ATEXT

This text is used as the Caption for this block.

3.4.1.2.4 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

 CONSULTIMATOR document & knowledge automation

41

3.4.1.3 Action: ENDBLOCK

The ENDBLOCK action defines the end of the block started with the STARTBLOCK
action.

Attention: ENDBLOCK hat has – and needs – neither an ACONDITION nor an ATEXT!

3.4.1.3.1 AID

see above

3.4.1.3.2 ATYPE

Value: endblock

3.4.2 Special Functions

3.4.2.1 Action: CLIPBOARD

The CLIPBOARD action creates a Button to copy a whole block wrapped up by
STARTBLOCK and ENDBLOCK into the clipboard.

3.4.2.1.1 AID

see above

3.4.2.1.2 ATYPE

Value: clipboard

3.4.2.1.3 ACONDITION

see above

3.4.2.1.4 ATEXT

This is the label of this button.

3.4.2.1.5 ABLOCKID

Defines, which block will be copied to the clipboard.

Use the AID assigned to the STARTBLOCK.

3.4.2.1.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

 CONSULTIMATOR document & knowledge automation

42

3.4.2.2 Action: WORDSAVE

The WORDSAVE action creates a Button to save a whole block wrapped up by
STARTBLOCK and ENDBLOCK as a Microsoft Word DOCX-File.

Please be aware that WORDSAVE will only use the font “Calibri” or as subsidiary choice
“Arial” and will not work with picture files unless they are directly base64-embedded
into the HTML output file.

Compatibility Notice:
WORDSAVE generated DOCX files need a full “desktop” version of Microsoft Word to
produce correct results, they are not compatible to the tablet or smartphone editions
of Word.

Also, due to system restrictions, Word output files cannot be produced on the iOS
Safari web browser and those based on the same browser engine. On iOS devices the
WORDSAVE button therefore will be suppressed, if the browser identifies itself
correctly.

3.4.2.2.1 AID

see above

3.4.2.2.2 ATYPE

Value: clipboard

3.4.2.2.3 ACONDITION

see above

3.4.2.2.4 ATEXT

This is the label of this button.

3.4.2.2.5 ABLOCKID

Defines, which block will be saved.

Use the AID assigned to the STARTBLOCK.

3.4.2.2.6 AFILENAME

Defines, under which filename the block will be saved. Enter the filename without an
extension. Any added extension will be ignored.

3.4.2.2.7 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

 CONSULTIMATOR document & knowledge automation

43

<astyle>color:red; font-size:15pt</astyle>

3.4.2.3 Action: PRINT

The PRINT action creates a Button to print the whole block wrapped up by
STARTBLOCK and ENDBLOCK.

3.4.2.3.1 AID

see above

3.4.2.3.2 ATYPE

Value: print

3.4.2.3.3 ACONDITION

see above

3.4.2.3.4 ATEXT

This is the label of this button.

3.4.2.3.5 ABLOCKID

Defines, which Block will be printed.

Use the AID assigned to the STARTBLOCK.

3.4.2.3.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

3.4.2.4 Action SHOWINPUTBLOCK

Action SHOWINPUTBLOCK displays a button which will toggle the INPUTBLOCK
between visible and invisible

3.4.2.4.1 AID

See above

3.4.2.4.2 ATYPE

Value: showomessages

 CONSULTIMATOR document & knowledge automation

44

3.4.2.4.3 ACONDITION

See above

3.4.2.4.4 ATEXT

This is the label of this button.

3.4.2.4.5 ATOGGLEINPUTOUTPUT

If the value is set to “true”, together with showing the INPUTBLOCK, the
OUTPUTBLOCK will be hidden.

3.4.2.4.6 ASTYLE

Here you can give your action its own style-information, using CSS style syntax. So,
e.g., if you want your text to be red with a size of 15pt, you would enter:

<astyle>color:red; font-size:15pt</astyle>

 CONSULTIMATOR document & knowledge automation

45

4 CONSULTIMATOR Data Encryption

In general, CONSULTIMATOR does not pass on any data. The complete process of
creating outputs from user inputs is performed locally inside the users web browser
without using an internet connection.

Nevertheless, CONSULTIMATOR enables you to pass on user data for additional
processing. If no encryption is used, data will be simply passed on via standard form
submit to the target defined in the project settings. For data security “on transit” you
can send data via SSL by using the HTTPS protocol. One arrived at the target site, data
are no longer encrypted, though.

If you would like to receive completely encrypted data, you can define your personal
RSA Public Key within the project settings, value “rsapublickey”.

4.1 Location of encryption process and browser compatibility

CONSULTIMATOR encrypts user data following the schema described below locally
inside the web browser.

You can use the web browsers Edge, Safari, Firefox, und Chrome in their up-to-date
versions. Internet Explorer is not supported, though.

4.2 How to create a RSA Public Key Private Key Pair

There are plenty of instructions of how to generate RSA key pairs on the internet. In
addition, the process is also explained in the CONSULTIMATOR user manual. For
optimal data security, please create a 2048-bit key pair or higher. CONSULTIMATOR
will support up to 4096-bit key pairs.

4.3 Encryption method

Encryption is asymmetric, meaning data will be encrypted with your public key placed
inside your output page, but can only be decrypted with your private key, which
should always be at your safe hands.

Because of the amount of data to be encrypted a fully asymmetric encryption is not an
option. Therefore, encryption works as follows:

1. A random password of 50 characters length will be created.

2. This will be used to create a key for a symmetric data encryption following the

standard SHA-256.

3. Data will now be encrypted using the standard AES-CBC. Encryption uses the web
browser-internal, well-established and maintained encryption libraries.

 CONSULTIMATOR document & knowledge automation

46

4. Then, the key itself will be encrypted with your RSA Public Key following the
standard RSA-256. Encryption will used the well-established library „JSEncrypt“
(https://github.com/travist/jsencrypt), which uses the well-established library
„jsbn“ (http://www-cs-students.stanford.edu/~tjw/jsbn/).

5. Even if actually not necessary, the so called “vector” needed for decrypting the
data is also encrypted with the RSA Public Key using the RSA-256 standard.

6. The encrypted key, the vector and the data will be concatenated to one string in
this way:

CMCENCRAW-V1.0:::::key::::vector:::data

4.4 Decryption

Decryption starts by splitting up the string back into key, vector and data. Then key
and vector are decrypted via the RSA Private Key. Both are then used for decrypting
the data via AES-CBC.

CONSULTIMATOR output pages already contain all routines necessary for decrypting
previously encrypted data, but, of course not, your RSA Private Key. If the output page
recognizes encrypted content, you will be prompted to enter your private key. The
private key will only be used locally inside the browser to decrypt the data and will not
be saved on your computer. As an option the private key can be saved locally as a
cookie, if a password is set for encryption an decryption.

4.5 encodeURIComponent / decodeURIComponent

To prevent errors during data encryption and decryption, binary data are encoded and
decoded by encodeURIComponent / decodeURIComponent.

4.6 No proprietary changes

The encryption does not use any proprietary changes to the standards described
above, so decryption can be ported to other program languages as long as they
support these standards.

https://github.com/travist/jsencrypt
http://www-cs-students.stanford.edu/~tjw/jsbn/

 CONSULTIMATOR document & knowledge automation

47

5 Prefilling CONSULTIMATOR Output Pages automatically

The input fields of CONSULTIMATOR output pages are simple form field and can be
prefilled with content on loading the page. As CONSULTIMATOR output pages are
static HTML, as long as they are not manually modified, population of content is
normally only possible via URL parameters by adding the field names and values to the
URL as follows:

….myoutputpage.html?inputvalue=123

This method is limited, as URLs cannot be entered into browsers at any length. Also,
this method of data transfer is not very safe.

This problem can be circumvented the following way:

CONSULTIMATOR output pages contain a Javascript-routine that will check on load,
whether the browser LocalStorage ore SessionStorage contains content in this
variable:

tdc_parameterstring

All content can be deposited there just like with URL transfer, e.g.

Inputvalue1=123&inputvalue2=456&inputvalue3=789

To load data into the variable, there´s a simple trick: just call a routine, that will first
load data into the variable and then redirect automatically to the output page.

In PHP this could look as follows, presuming, $content will contain the parameter
string mentioned above and $form contains the URL of the output page.

<html>

<head>

<script>

 var content = "<?php echo($content);?>";

 var my_form = "<?php echo($form);?>";

 localStorage.removeItem('tdc_parameterstring');

 sessionStorage.removeItem('tdc_parameterstring');

 sessionStorage.setItem("tdc_parameterstring", content);

 window.location = "https://consultimator.com" + my_form;

</script>

 CONSULTIMATOR document & knowledge automation

48

</head>

<body>

</body>

Please be aware that this will only work, if both pages , the dynamic page, filling the
variable tdc_parameterstring, and the output page exist on the same server.

CONSULTIMATOR offers you a dynamic page to populate your forms via

https://consultimator.com/populate.php

free of chare, but without any liability as a service. Please add your output page to the
URL as follows:

?form=Link to own output page

Die actual form data are passed on via FORM POST. Please be aware, that this service
is only meant for evaluation purposes, as CONSULTIMATOR can read all data
transferred this way! For productive purposes please host both the population routine
and your output pages on your own server.

Please ask us, if you need the source code for „populate.php“, we will send it to you
free of charge for individual use and adaption.

https://consultimator.com/populate.php

 CONSULTIMATOR document & knowledge automation

49

6 CONSULTIMATOR in Action

Once you have created your project file, tell CONSULTIMATOR to process it and create
the output file.

Important:
To use the CONSULTIMATOR you need a personal license key. This key is
entered into the project file. Without the license key you can use
CONSULTIMATOR only in demo mode and only for evaluation purposes.

You can process your project file by visiting this URL:

https://consultimator.com

There, you can start the CONSULTIMATOR Editor and upload your project file.

Alternatively, if you have uploaded the project file to any webserver and it can be
accessed via URL, you can invoke CONSULTIMATOR directly:

https://consultimator.com/process.php?t=https://anyserver.com/anypath/myprojectfi
le.cmp (or: .xml)

Be aware: if you use this method, your license key will be publicly viewable, if anyone
finds the project file xml. Instead, leave the license key value in your project file empty
and add another parameter to the URL above: “&s=yourlicensekey”

If the project file is faulty, e.g. because of a wrong XML structure, syntax errors in
element descriptions or incorrectly defined “forbidden” characters, you will get an
error message, usually combined with quite useful hints where to look for the
problem.

If the project file has a correct XML structure, CONSULTIMATOR will generate the
HTML output.

Important:
CONSULTIMATOR is very tolerant concerning creating the output file, meaning it will
create it even if there might be JavaScript or logical errors within ACONDITIONS or
COMPUTE actions used, incorrect HTML tags etc. These can prevent the output file to
be presented the way you expected. To avoid frustration, it is recommended to
proceed as follows:

• Use, if possible, the CONSULTIMATOR Editor! The Editor will guide you
through the process of building the project file. This significantly reduces
possible error sources!

• Build your project file step by step and repeatedly process it through
CONSULTIMATOR to get interim results. This way you will see possible errors

https://consultimator.com/

 CONSULTIMATOR document & knowledge automation

50

immediately and you can remove them before they mix up with other
problems, what would make debugging far more difficult.

• If you know how they work, please make use of the developer tools, especially
the debug console included in your web browser. They give you very valuable
information concerning possible errors. Especially faulty ACONDITIONS and
COMPUTE actions will cause JavaScript errors which will show up immediately
in the browser debugger tool.

• Often, errors have very human causes. Especially logical errors cause
unexpected reactions: mistakes in “bigger than” / “smaller than” conditions
happen quite often, or you used the COMPUTE-Action without technical errors,
but your dog is now, like in the example above, 123 instead of 15 years old.

In this case it can be useful for debugging to use the MESSAGE action to let
CONSULTIMATOR present you COMPUTE action results. If it doesn´t show the
value you had expected, this brings you a big step further.

